科学软件网提供软件和培训服务已有19年,拥有丰富的经验,提供软件产品上千款,涵盖领域包括经管,仿真,地球地理,生物化学,工程科学,排版及网络管理等。同时还有的服务,现场培训+课程,以及本地化服务。
Count Data
The widest range of specifications for count data of any package is provided, including several newly developed models:
Poisson and negative binomial models
New specifications for NB models
Gamma, generalized Poisson, Polya-Aeppli
Zero inflation and hurdle
Fixed and random effects
Latent class
Quantile Poisson regression
Probit and logit models
Bivariate probit models
Multivariate probit model
Partial observability
Sample selection
Multinomial (Logit) Choice Models
Random effects and random ultility models
Random regret
Latent class models
Ordered Choice Models
Bivariate ordered choice models
Sample selection models
Generalized ordered probit and logit models
Specifications for hierarchical models
Zero inflated ordered choice
Count Data Models
Specifications for censoring, truncation, and underreporting
Zero inflation and negative binomial (NB1, NB2, NBP, NBX)
Generalized Poisson
Gamma model
Quantile Poisson regression
Panel Data Models
Fixed effects for all models
Random effects for all models, quadrature and simulation estimators
Random parameters models
Latent class specifications
Tools
Specification analysis
Heteroscedasticity
Robust inference tools
Lagrange multiplier, likelihood and Wald tests
Model simulator for binary choice models
Matching and propensity score analysis
Average partial effects
Partial effects for interactions
Model simulation and prediction
Statistics
Numerous fit measures
Test statistics for specifications
Partial effects for all models
Interaction terms in model specification
Robust Estimators
GMM estimation for user specified models
Kernel density estimation
Spectral density estimation
Random parameters models
Kernel weights for estimation
Multiple Imputation
Up to 30 variables imputed simultaneously
Six types of imputation procedures for
Continuous variables using multiple regression
Binary variables using logistic regression
Count variables using Poisson regression
Likert scale (ordered outcomes) using ordered probit
Fractional (proportional outcome) using logistic regression
Unordered multinomial choice using multinomial logit
No duplication of the base data set
All models supported by built in procedures
Any model written by the user with GMME, MAXIMIZE, NLSQ, etc.
Estimate any number of models using each imputed data set
19年来,公司始终秉承、专注、专心的发展理念,厚积薄发,积累了大量的人才、技术以及行业经验,在行业内得到了大量用户的认可和高度价。